Why is CFM (crimp force monitor) important?

2022/05/21 08:53:56

What can a CFM actually detect?  A general assumption within the industry is that crimp force monitoring will provide reliable detection of all general crimping errors during processing, including:

Wrong strip length

Missing strands

Wrong wire cross section

Wrong terminal

Inconsistent terminal material

Insulation in wire crimp

Wrong insertion depth

Wrong crimp height


But, simply plugging in a CFM will not solve all their crimp quality issues. The main function of a CFM is to be a process monitor and to detect variations along the crimp force signature curve that are outside of the programmed tolerances. The CFM considers any variation outside of the programmed tolerance a “bad” crimp.


An operator must teach the CFM what to identify as a good or bad crimp through the “teach-in” process. This consists of running several crimps and manually verifying that the data associated with that crimp (crimp force, crimp height, etc.) is correct. The CFM then compares all future crimps to this data. Therefore, in CFM terms, “bad” really means the actual crimp curve is outside of the tolerance range that was defined from the known good crimps during the “teach-in” process. But, since this does not fit in the CFM’s display screen, it is simply called a “bad” crimp. Different applications require different CFM parameters and operators need to learn to interpret the feedback from the CFM to determine where the variation occurred and if that variation really constitutes a “bad” crimp.